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1. Introduction   

 The GAN-VS™ utilizes a Generative Adversarial Network (GAN) as its core framework 

for wafer-level virtual data generation. Through a training process involving the generator 

and discriminator, the model learns to create high-dimensional synthetic images that 

accurately represent key wafer characteristics. This approach enables realistic data 

augmentation and simulation, aiding process optimization and parameter exploration within 

semiconductor manufacturing. 

2. Virtual Silicon Data Format 

To ensure seamless integration and analysis within the GAN-VS™, it is essential to 

understand the required data format for Chip Probing (CP) and Wafer Acceptance Test (WAT) 

data. The following sections outline the expected structures for data type: 

• File Type: ZIP and CSV. 

• Required Columns: 

o LWID: A distinctive identifier assigned to each generated wafer for tracking 

and analysis. (Lot Id. + Wafer No.) 

o X: Represents the horizontal coordinate, uniquely identifying the chip's 

position on the generated wafer. 

o Y: Represents the vertical coordinate, uniquely identifying the chip's position 

on the generated wafer. 

o Features: Measurement parameters (refer to TABLE I and Fig. 1). 
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TABLE I: Generated virtual silicon features in the dataset. 

Feature Description Unit 
CP1 Leakage current μA 

CP2 Chip speed Hz 

CP3 Functional accuracy at 300MHz % 

CP4 Functional accuracy at 400MHz % 

CP5 Functional accuracy at 500MHz % 

CP6 Functional accuracy at 600MHz % 

WAT1 Gate threshold voltage of the low threshold NMOS V 

WAT2 Gate threshold voltage of the low threshold PMOS V 

WAT3 Gate threshold voltage of the ultra-low threshold NMOS V 

WAT4 Gate threshold voltage of the ultra-low threshold PMOS V 

WAT5 Drain current of the low threshold NMOS mA 

WAT6 Drain current of the low threshold PMOS mA 

WAT7 Drain current of the ultra-low threshold NMOS mA 

WAT8 Drain current of the ultra-low threshold PMOS mA 

 

 

Fig. 1 CP + WAT Virtual Silicon Data Format 
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3. Dataset Conversion 

 

Fig. 2 Dataset Conversion 

As shown in Fig. 2, the figure illustrates converting wafer data into a multi-channel image 

format. The original CP and WAT test data are transformed into 2D images with multiple 

feature dimensions (parameter C). The size of C is directly related to model size, and training 

time increases non-linearly with C. The dataset in the legend includes 8 WAT measurements 

and 2 CP measurements, totaling 10 dimensions (C=10). Notably, the wafer is circular, but 

the data is represented in a rectangular format, with data outside the wafer boundary filtered 

using a mask to maintain analysis accuracy.  

To further augment the training set, slight angle rotations are applied, especially useful 

when data is limited during early mass production. This method increases data diversity and 

enhances model stability. By simulating potential rotational defects and process parameter 

distributions, as shown in Fig. 3, we can capture key features of the chip manufacturing 

process, improving the model’s training effectiveness. 
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Fig. 3 Data Augmentation 
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4. GAN-based Virtual Silicon (GAN-VS) 

This section explains how the GAN model is used to model multi-dimensional test data 

from the chip manufacturing process, covering chip performance, wafer process 

characteristics, and potential defects, to accurately capture process defects and parameter 

uniformity. 

4.1. GAN Model 

As shown in Fig. 4, the generator consists of convolutional layers and outputs multi-

dimensional images through a Tanh layer to simulate chip images. The discriminator uses 

convolutional layers and a Sigmoid layer to assess the authenticity of the chip data. The two 

components work together to generate high-quality chip data. 

During training, we use BCE Loss and minimize the difference between generated and 

real chips through gradient descent. To enhance training stability, Batch Normalization and 

LeakyReLU activation are applied. The Adam optimizer is used with an initial learning rate 

of 0.001, decaying by 0.9 every 100 epochs. Training runs for 10,000 epochs with a batch 

size of 20. Ultimately, the GAN model generates realistic chip data, including chip location, 

wafer flatness, and process defects, forming a reliable foundation for simulating and 

analyzing the manufacturing process. 

 

Fig. 4 GAN Modeling 
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4.2. GAN Model Performance Evaluation 

We evaluate the GAN model by plotting 2D scatter plots of generated and real samples, 

with feature combinations as axes. Ideally, the scatter plots should overlap, ensuring that 

the generated data aligns with the real data in both individual and joint feature distributions, 

as shown in Fig. 5. 

Additionally, we use quantitative metrics, such as Jensen-Shannon divergence (JS 

Divergence) to compare the probability distributions of the generated and real data, and the 

KDE metric to assess the differences between feature distributions, ensuring the reliability 

and accuracy of the generated chip data. 

 

Fig. 5 Feature Scatter Plot for GAN Model Similarity 

We evaluate the similarity between real data and GAN-generated samples by 

comparing their feature distributions. Using Jensen-Shannon (JS) divergence, lower values 

indicate greater similarity between the generated and real samples. The JS divergence 

between the real distribution P and generated distribution Q is defined as follows: 

   (1) 
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The Kullback-Leibler divergence DKL(P||M) can be calculated using the following formula: 

   (2) 

where M represents the mixed distribution of P and Q, defined as: 

(3) 

Since the JS divergence between the two distributions ranges from 0 to 1, the similarity of 

the JS divergence between P and Q is defined as: 

(4) 

JS divergence similarity analysis (Similarity = 1 - JS) shows that the probability distributions 

of the model-generated virtual chip data closely match real data in each dimension, with 

values ranging from 0.98 to 1.0. Additionally, the model exhibits strong robustness and 

generalization performance for anomalous datasets. See Fig. 6 for details. 

 

Fig. 6 Feature Distribution Similarity 
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As shown in Fig. 7, experimental results reveal that the GAN model's high-dimensional chip 

data closely matches real chip data in scatter plots between any two features. The model 

successfully captures process variability during process adjustments, marked by yellow, 

green, and blue circles. In high-dimensional space, the relationships between features and 

their joint distributions remain consistent with the original data.  

To enhance the model, we can exclude data irrelevant to mass production, such as 

intentionally skewed wafers, to avoid learning anomalies from early process adjustments. 

Unlike traditional methods, the GAN model effectively learns nonlinear relationships in the 

chip manufacturing process, capturing subtle details and fitting the real data distribution 

more precisely. Further analysis confirms that the GAN model accurately captures 

parameter distributions, wafer-level uniformity, and manufacturing process details, reflecting 

more realistic wafer defects, as seen in Fig. 8.  

 

Fig. 7 Feature Correlation Matrix between Generated and Real Silicon 
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Fig. 8 Wafer-level Feature Uniformity of Generated Silicon 

GAN-based methods often face challenges in convergence and instability. While the 

improved WGAN (using Wasserstein Loss and removing BatchNorm and Sigmoid layers, 

as shown in Fig. 10-3) enhances performance, it still struggles with data distributions that 

have multiple peaks. Additionally, chip functional accuracy (e.g., frequency-dependent 

features like CP3-CP6) typically follows non-Gaussian distributions, such as bimodal, skew-

normal, log, or cosh forms. As multi-core chip performance is highly influenced by operating 

frequency, GANs face difficulties in handling such tasks. The next section will explore how 

diffusion models can address these challenges. 
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5. Virtual Silicon Data Visualization 

 

Fig. 9 Demonstrations of 20 pre-wafer samples with CP1 generated by GAN 

 

 

Fig. 10 Demonstrations of 20 pre-wafer samples with CP2 generated by GAN 
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Fig. 11 Demonstrations of 20 pre-wafer samples with CP3 generated by GAN 

 

 

Fig. 12 Demonstrations of 20 pre-wafer samples with CP4 generated by GAN 
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Fig. 13 Demonstrations of 20 pre-wafer samples with CP5 generated by GAN 

 

 

Fig. 14 Demonstrations of 20 pre-wafer samples with CP6 generated by GAN 
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6. Getting Started 

6.1. Beginner Users 

Access: Free download of one suitable sample from the website. 

Purpose: To explore and familiarize themselves with the system or product. 

6.2. Advanced Users 

 Access: Option to download 5 or 10 samples based on the chosen subscription plan. 

Purpose: To gain deeper insights or leverage additional resources for professional use.  

6.3. Custom Users 

 Access: Users requiring more samples are encouraged to contact us directly for  

customized solutions. 

7. Customer Support and Assistance 

For further assistance or to report any issues you may encounter, please reach out to our 

dedicated support team. Our team is committed to providing timely solutions and ensuring 

your experience with our system is seamless. 

Contact Information: 

• AnswerXpert QA Forum: http://172.17.20.61/post_message4.php 

• Operating Hours: Monday to Friday, 9:00 AM - 6:00 PM (GMT) 

Feel free to contact us with any questions, feedback, or concerns. We value your input and 

are here to help you resolve any challenges effectively. 

 

 


